On the Role of Nanometer Scale Structure on Interfacial Energy

نویسندگان

  • Jeffrey J. Kuna
  • Kislon Voïtchovsky
  • Chetana Singh
  • Hao Jiang
  • Steve Mwenifumbo
  • Pradip K. Ghorai
  • Molly M. Stevens
  • Sharon C. Glotzer
  • Francesco Stellacci
چکیده

Natural surfaces are often structured with nanometre-scale domains, yet a framework providing a quantitative understanding of how nanostructure affects interfacial energy, γSL, is lacking. Conventional continuum thermodynamics treats γSL solely as a function of average composition, ignoring structure. Here we show that, when a surface has domains commensurate in size with solvent molecules, γSL is determined not only by its average composition but also by a structural component that causes γSL to deviate from the continuum prediction by a substantial amount, as much as 20% in our system. By contrasting surfaces coated with either molecular (<2 nm) or larger scale domains (>5 nm), we find that while the latter surfaces have the expected linear dependence of γSL on surface composition, the former exhibit a markedly different non-monotonic trend. Molecular dynamics simulations show how the organization of the solvent molecules at the interface is controlled by the nanostructured surface, which in turn appreciably modifies γSL.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study on Structure and Property of Special Sulfonated Petroleum as a Complicated Anionic Surfactant

Alkaline/surfactant/polymer (ASP) flooding has been extensively applied to enhancing oil recovery. As an oil displacement agent, pe1troleum sulfonate (PS) is widely used in ASP pilot experiments. It is very important to find a petroleum sulfonate with a high interfacial activity and low adsorption loss. Anionic surfactant petroleum sulfonate is synthesized in a single-tube film sulfonation reac...

متن کامل

Photon Upconversion Through Tb(3+) -Mediated Interfacial Energy Transfer.

A strategy of interfacial energy transfer upconversion is demonstrated through the use of a terbium (Tb(3+) ) dopant as energy donor or energy migrator in core-shell-structured nanocrystals. This mechanistic investigation presents a new pathway for photon upconversion, and, more importantly, contributes to the better control of energy transfer at the nanometer length scale.

متن کامل

Performance and Structure of Thin Film Composite Reverse Osmosis Membranes Prepared by Interfacial Polymerization in the Presence of Acid Acceptor

During interfacial polymerization (IP) reaction between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC), a by-product, i.e. hydrochloric acid can produce. This produced acid diffuses back in aqueous phase and protonates MPDA and reduces its reactivity that results in lowering of polymer yield and performance of membrane. Further, for getting consistency in reverse...

متن کامل

Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation

We combine non-contact atomic force microscopy (AFM) imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111) and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on plastic deformation mechanisms of crystalline Pt(111) are consistent with the discrete mechanisms est...

متن کامل

Nanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography

Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009